Infinitesimal

Infinitesimais (ε) e infinitos (ω) na linha de números hiper-reais (ε = 1/ω)

Infinitesimal (ou infinitésimo), na matemática, é definido como uma quantidade que está mais perto de zero do que qualquer número real, mas diferente de zero.

Infinitesimais não pertencem aos números reais, mas eles existem em outros sistemas de números como os números hiper-reais e os números surreais. Esses sistemas podem ser pensados como extensões da linha dos números reais, em que tanto infinitesimais quanto infinitos podem ser considerados quantidades significantes, já que, nos reais, quantidades com diferença de um infinitesimal devem ser consideradas iguais.[1]

Os números infinitesimais foram usados na definição da derivada desenvolvida por Leibniz, em que uma derivada poderia ser pensada como uma razão de dois infinitesimais. A definição não foi formalizada por ele. Com isso, os infinitesimais foram substituídos pelos limites, que podiam ser calculados com números reais.

  1. John Kirkby, Arithmetical Institutions: Containing a Compleat System of Arithmetic Natural, Logarithmical, and Algebraical in All Their Branches (1735), Part V, Chap V, Of the Arithmetick of Infinites, p.92 [google books]

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne