Lei de Gauss para o magnetismo

Na física, a Lei de Gauss para o magnetismo é uma das quatro equações de Maxwell que são a base da eletrodinâmica clássica. Ela estabelece que o campo magnético B tem divergente igual a zero,[1] ou seja, que é um campo vetorial solenoidal. Isso é equivalente à afirmação de que não existem monopolos magnéticos.[2] Em vez de “cargas magnéticas”, a entidade básica do magnetismo é o dipolo magnético. (Se em algum momento monopolos magnéticos forem encontrados, a lei deverá ser modificada, conforme explicado abaixo.)

A lei de Gauss para o magnetismo pode ser escrita de duas maneiras: a forma diferencial e a forma integral. Ambas maneiras são equivalentes graças ao teorema da divergência

O nome “lei de Gauss para o magnetismo”[1] não é usado universalmente. A lei também é chamada de “Ausência de polos magnéticos livres”;[2] uma referência até explicitamente diz que a lei “não tem nome”.[3] Ela também pode ser referida como “exigência de transversalidade”,[4] porque para ondas planas ela requer que a polarização seja transversal à direção de propagação.

  1. a b Chow, Tai L. (2006). Introduction to electromagnetic theory : a modern perspective. Boston: Jones and Bartlett Publishers. ISBN 0763738271. OCLC 61261375 
  2. a b Jackson, John David, 1925-2016. (1999). Classical electrodynamics 3.ª ed. New York: Wiley. ISBN 047130932X. OCLC 38073290 
  3. Griffiths, David J. (David Jeffery), 1942- (1999). Introduction to electrodynamics 3.ª ed. Upper Saddle River, N.J.: Prentice Hall. ISBN 013805326X. OCLC 40251748 
  4. Joannopoulos, J. D. (John D.), 1947- (2008). Photonic crystals : molding the flow of light 2.ª ed. Princeton: Princeton University Press. ISBN 9780691124568. OCLC 180190957 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne