Logaritmo complexo

Na análise complexa, um logaritmo complexo é uma função inversa da função exponencial complexa, assim como o logaritmo natural real ln x é o inverso da função exponencial real ex. Assim, um logaritmo de um número complexo z é um número complexo w tal que ew = z.[1] A notação para tal w é ln z ou z. Como todo número complexo diferente de zero z possui infinitamente muitos logaritmos[1] é necessário cuidado para dar a essa notação um significado inequívoco.

Se z =re com r> 0 (uma forma polar), então w = ln r + é um logaritmo de z; acrescentando múltiplos inteiros de 2πi dá todos os outros.[1][2][3]

  1. a b c Sarason, Section IV.9.
  2. Conway, John B. (1978). Functions of One Complex Variable 2nd ed. [S.l.]: Springer 
  3. Lang, Serge (1993). Complex Analysis 3rd ed. [S.l.]: Springer-Verlag 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne