Na física, as ondas gravitacionais são ondulações na curvatura do espaço-tempo que se propagam como ondas, viajando para o exterior a partir da fonte. Elas são incrivelmente rápidas, viajam à velocidade da luz (299 792 458 metros por segundo) e espremem e esticam qualquer coisa em seu caminho ao passarem.
Previstas em 1916[1][2] por Albert Einstein com base em sua teoria da relatividade geral,[3][4] e detectadas em 2015, as ondas gravitacionais transportam energia na forma de radiação gravitacional. A teoria geral da relatividade de Einstein prevê que a presença de massa causa uma curvatura no espaço-tempo. Quando objetos maciços se fundem, essa curvatura pode ser alterada, enviando ondulações para fora do universo. Estas são conhecidas como ondas gravitacionais. Com o tempo que esses distúrbios nos alcançam, eles são quase imperceptíveis. Foi apenas um século após a previsão de Einstein que os cientistas desenvolveram um detector sensível o suficiente — o Laser Interferometer Gravitational-Wave Observatory ou LIGO — e conseguiram confirmar a existência de ondas gravitacionais.[5]
A existência de ondas gravitacionais é uma possível consequência da covariância de Lorentz da relatividade geral, uma vez que traz o conceito de uma velocidade finita de propagação de interações físicas consigo. Em contraste, as ondas gravitacionais não existiam na teoria newtoniana da gravitação, que postula que as interações físicas propagam-se em velocidade infinita. Antes da detecção direta de ondas gravitacionais (ver abaixo), já havia evidências indiretas sobre a sua existência. Por exemplo, as medições do sistema binário Hulse-Taylor sugeriram que as ondas gravitacionais eram mais do que um conceito hipotético. As fontes potenciais de ondas gravitacionais detectáveis incluem sistemas estelares binários compostos por anãs brancas, estrelas de nêutrons e buracos negros.
Para entender como Einstein conseguiu prever a existência de ondas gravitacionais ainda que não pudesse detectá-las, é preciso entender por que seria necessário que algo como uma onda gravitacional existisse: a Terra continua em sua órbita aproximadamente circular ao redor do Sol por causa da atração gravitacional do Sol, cujo tamanho da órbita depende da massa do Sol. No entanto, se ele começa a perder massa (suponha, por exemplo, que existe uma explosão interna que tem o efeito de disparar dois grandes pedaços do Sol em direções opostas em ângulo reto ao plano da órbita da Terra), a maior parte do Sol permanecerá no mesmo lugar, mas a órbita da Terra será afetada. Como o Sol agora será um pouco mais leve, a Terra será menos fortemente atraída por ele, e sua órbita ficará um pouco maior. A questão é: quanto tempo leva a Terra para perceber que o Sol já não é tão maciço quanto era? Ela começa a embarcar em seu novo curso imediatamente, ou é preciso um período para que a Terra perceba que algo aconteceu com o Sol? Dado que, de acordo com a teoria de Einstein, nada pode viajar mais rápido do que a luz, a Terra não saberia que o Sol estava perdendo massa por pelo menos oito minutos — o tempo que levaria para a luz viajar do Sol para Terra. O Sol, por assim dizer, teria que enviar uma mensagem para a Terra, e essa mensagem não poderia viajar mais rápido do que a velocidade da luz. Para entender como essa mensagem viaja, é preciso pensar em algo como uma onda, uma onda gravitacional, que transmite a informação que a forma do espaço-tempo está mudando. Assim, uma maneira de pensar sobre a radiação gravitacional é como o mensageiro que transporta informações sobre mudanças nos campos gravitacionais que atraem uma coisa para outra.[6]
Vários observatórios de ondas gravitacionais (detectores) estão em construção ou em operação ao redor do mundo.[7] Em 2017, o Prêmio Nobel de Física foi concedido a Rainer Weiss, Kip Thorne e Barry Barish por seu papel na detecção de ondas gravitacionais.[8][9]