Transformada de Radon

A transformada de Radon auxilia na análise de projeções de objetos sobre linhas retas.
Transformada de Radon da função indicadora de dois quadrados mostrados na imagem abaixo. Regiões mais claras indicam valores maiores da função; preto indica zero (ver sinograma).
A função original f(x,y) é igual a um sobre a região branca e zero na região escura.
A teoria da transformada de Radon fornece a base matemática para a tomografia computadorizada.

Em matemática, a transformada de Radon em duas dimensões, nomeada em homenagem ao matemático austríaco Johann Radon, é a transformada integral consistindo da integral de uma função sobre linhas retas. A transformada foi introduzida por Johann Radon em 1917,[1] que também forneceu uma fórmula para a transformada inversa. Radon posteriormente incluiu fórmulas para a transformada em três dimensões, na qual a integral é tomada sobre planos. Ela foi posteriormente generalizada para espaços Euclidianos de dimensões mais altas, e mais amplamente no contexto da geometria integral. O análogo complexo da transformada de Radon é conhecido como a transformada de Penrose.

A transformada de Abel é um caso especial da transformada de Radon bidimensional.[2][nota 1]

O tema do trabalho original de Radon era o que se conhece por problema da reconstrução a partir das projeções, isto é, como obter uma função f(x,y), não observável diretamente, a partir de suas projeções φx(y) medidas sobre o plano. Esse problema reveste-se de interesse em áreas tão diversas quanto diagnóstico por imagem, óptica, interferometria holográfica, geofísica, radioastronomia, cristalografia, microscopia, ciência dos materiais e também na matemática pura. De forma geral, a transformada de Radon é útil sempre que se deseja obter informação sobre a estrutura interna de um objeto através de uma sondagem do seu contorno. Entende-se que o advento da tomografia computadorizada na década de 1970 foi um fato extremamente relevante para o aumento do interesse da comunidade técnica nessa transformada.[2] O problema da reconstrução a partir das projeções é resolvido pela transformada de Radon inversa.[3][4]

Define-se também a transformada generalizada de Radon atribuindo-se um peso diferente para cada projeção.[5]

  1. Radon, Johann (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften (Reports on the proceedings of the Saxony Academy of Science). [S.l.: s.n.] pp. 262–277 ; Translation: Radon, J.; Parks, P.C. (translator) (1986). On the determination of functions from their integral values along certain manifolds. IEEE Transactions on Medical Imaging. 5. [S.l.: s.n.] pp. 170–176. PMID 18244009. doi:10.1109/TMI.1986.4307775 
  2. a b S. Deans - Radon and Abel Transforms in A. Poularikas (org) - The Transforms and Applications Handbook, 2nd. edition, Boca Raton: CRC, 2000, Cap. 8, pp. 739 a 740
  3. S. Deans - op. cit., cap. 8, pp. 772 a 776
  4. R. Bracewell - The Fourier Transform and its Applications, 3rd. Edition, New York: McGraw-Hill, 2000, ISBN 0-07303-938-1 / ISBN 978-0-0730-3938-1, Cap. 13, pp. 356 a 358
  5. E. Miqueles - A Transformada Generalizada Atenuada de Radon: Inversão Analítica, Aproximações, Métodos Iterativos e Aplicações em Tomografia por Fluorescência, Fapesp, Campinas, 2010, Cap. 2, pp. 9 a 17


Erro de citação: Existem etiquetas <ref> para um grupo chamado "nota", mas não foi encontrada nenhuma etiqueta <references group="nota"/> correspondente


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne