În matematică, factorizarea constă în scrierea unui număr sau a altui obiect matematic ca produs de mai mulți factori, de obicei obiecte mai mici sau mai simple de același fel. De exemplu, 3 × 5 este o factorizare a întregului 15, iar (x – 2)(x + 2) este o factorizare a polinomului x2 – 4.
Nu se consideră de obicei că factorizarea ar avea vreo importanță în sistemele de numere care posedă diviziuni, cum ar fi numerele reale sau complexe, deoarece orice poate fi scris trivial ca oricând nu este zero. Totuși, o factorizare semnificativă pentru un număr rațional sau o funcție rațională poate fi obținută prin aducerea la o formă ireductibilă și factorizarea separată a numărătorului și numitorului.
Primii care s-au gândit la conceptul de factorizare au fost matematicienii antici greci(d) în cazul numerelor întregi. Ei au demonstrat teorema fundamentală a aritmeticii, care afirmă că fiecare număr întreg pozitiv poate fi factorizat într-un produs de numere prime, care nu pot fi factorizate mai departe în numere întregi mai mari de 1. Mai mult, această factorizare este unică până la ordinea factorilor. Deși factorizarea întregilor este un fel de operație inversă înmulțirii, ea este mult mai dificilă din punct de vedere algoritmic, fapt care este exploatat în criptosistemul RSA pentru a implementa criptografia cu cheie publică.
Factorizarea polinomială(d) este și ea studiată de secole. În algebra elementară, factorizarea unui polinom reduce problema găsirii rădăcinilor sale la găsirea rădăcinilor factorilor. Polinoamele cu coeficienți în mulțimea numerelor întregi sau într-un corp posedă proprietatea de factorizare unică, o versiune a teoremei fundamentale a aritmeticii în care numerele prime sunt înlocuite cu polinoame ireductibile(d). În special, un polinom univariat cu coeficienți complecși admite o factorizare unică (până la ordonare) în polinoame liniare: aceasta este o versiune a teoremei fundamentale a algebrei. În acest caz, factorizarea se poate face cu algoritmi de găsire a rădăcinilor(d). Cazul polinoamelor cu coeficienți întregi este fundamental pentru algebra computerizată(d). Există algoritmi de calcul eficienți pentru calcularea factorizărilor (complete) în cadrul inelului polinoamelor cu coeficienți de număr rațional.
Un inel comutativ care posedă proprietatea de factorizare unică se numește domeniu unic de factorizare. Există sisteme numerice, cum ar fi anumite inele de numere întregi algebrice, care nu sunt domenii de factorizare unică. Totuși, inelele de numere întregi algebrice satisfac proprietatea mai slabă a domeniilor Dedekind(d): idealele se împart în mod unic în ideale prime.
Termenul factorizare se poate referi și la descompuneri mai generale ale unui obiect matematic în produsul unor obiecte mai mici sau mai simple. De exemplu, orice funcție poate fi inclusă în compoziția unei funcții surjective cu o funcție injectivă. Matricele posedă multe tipuri de factorizări de matrice(d). De exemplu, fiecare matrice are o factorizare LUP(d) unică ca produs al unei matrice triunghiulare inferioare(d) L cu toate elementele de pe diagonală egale cu unu, cu o matrice triunghiulară superioară(d) U și o matrice permutare P ; aceasta este o formulare matriceală a eliminării gaussiene(d).