AdaBoost

AdaBoost (сокращение от англ. adaptive boosting) — алгоритм машинного обучения, предложенный Йоавом Фройндом[англ.] и Робертом Шапире[англ.]. Может использоваться в сочетании с несколькими алгоритмами классификации для улучшения их эффективности. Алгоритм усиливает классификаторы, объединяя их в ансамбль. Является адаптивным в том смысле, что каждый следующий ансамбль классификаторов строится по объектам, неверно классифицированным предыдущими комитетами. AdaBoost чувствителен к шуму в данных и выбросам. Однако он менее подвержен переобучению по сравнению с другими алгоритмами машинного обучения.

AdaBoost вызывает слабые классификаторы в цикле . После каждого вызова обновляется распределение весов , которые отвечают важности каждого из объектов обучающего множества для классификации. На каждой итерации веса каждого неверно классифицированного объекта возрастают, таким образом новый комитет классификаторов «фокусирует своё внимание» на этих объектах.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne