Сбалансированное итеративное сокращение и кластеризация с помощью иерархий (BIRCH, англ. balanced iterative reducing and clustering using hierarchies) — это алгоритм интеллектуального анализа данных без учителя, используемый для осуществления иерархической кластеризации на наборах данных большого размера[1]. Преимуществом BIRCH является возможность метода динамически кластеризовать по мере поступления многомерных метрических точек данных[англ.] в попытке получить кластеризацию лучшего качества для имеющегося набора ресурсов (памяти и временных рамок[англ.]). В большинстве случаев алгоритм BIRCH требует одного прохода по базе данных.
Разработчики BIRCH утверждали, что это был «первым алгоритмом кластеризации, предлагающим в базах данных эффективно обрабатывать 'шум' (точки данных, которые не являются частью схемы)»[1] побивший DBSCAN за два месяца. Алгоритм получил в 2006 году приз SIGMOD после 10 лет тестирования[2].