MADS-box

MADS-box (MADS-бокс) — консервативная последовательность нуклеотидов, кодирующая MADS-домен, при помощи которого белки связываются с ДНК. MADS-домен белков связывается с ДНК, в которой есть последовательность CC[A/T]6GG, коротко обозначаемая как CArG-box[1]. Большинство белков, содержащих этот домен, являются транскрипционными факторами и влияют на экспрессию генов[1][2]. Разные исследователи приводят разные данные относительно длины MADS-box, но обычно она составляет около 168—180 пар оснований, то есть закодированный в ней MADS-домен состоит из 56—60 аминокислот[3][4][5][6]. Существуют данные, согласно которым MADS-домен эволюционировал из последовательности белка топоизомераза второго типа, который, как полагают, был у общего предка всех ныне живущих эукариот[7].

Все гены, содержащие последовательность MADS-box, объединены в единое семейство генов MADS-box[8].

  1. 1 2 West A.G., Shore P., Sharrocks A.D. DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending (англ.) // Mol. Cell. Biol. : journal. — 1997. — 1 May (vol. 17, no. 5). — P. 2876—2887. — PMID 9111360. — PMC 232140. Архивировано 27 сентября 2011 года.
  2. Svensson, Mats. Evolution of a family of plant genes with regulatory functions in development; studies on Picea abies and Lycopodium annotinum (англ.) : journal. — Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Biology, Department of Evolutionary Biology, 2000. — Vol. Doctoral thesis. — ISBN 91-554-4826-7. Архивировано 1 апреля 2009 года.
  3. Ma K., Chan J. K., Zhu G., Wu Z. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. (англ.) // Molecular And Cellular Biology. — 2005. — May (vol. 25, no. 9). — P. 3575—3582. — doi:10.1128/MCB.25.9.3575-3582.2005. — PMID 15831463. [исправить]
  4. Lamb R. S., Irish V. F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2003. — 27 May (vol. 100, no. 11). — P. 6558—6563. — doi:10.1073/pnas.0631708100. — PMID 12746493. [исправить]
  5. Lü S., Du X., Lu W., Chong K., Meng Z. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. (англ.) // Evolution & Development. — 2007. — January (vol. 9, no. 1). — P. 92—104. — doi:10.1111/j.1525-142X.2006.00140.x. — PMID 17227369. [исправить]
  6. Nam J., dePamphilis C. W., Ma H., Nei M. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. (англ.) // Molecular Biology And Evolution. — 2003. — September (vol. 20, no. 9). — P. 1435—1447. — doi:10.1093/molbev/msg152. — PMID 12777513. [исправить]
  7. Gramzow L., Ritz M. S., Theissen G. On the origin of MADS-domain transcription factors. (англ.) // Trends In Genetics : TIG. — 2010. — April (vol. 26, no. 4). — P. 149—153. — doi:10.1016/j.tig.2010.01.004. — PMID 20219261. [исправить]
  8. Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. (англ.) // Science (New York, N.Y.). — 1990. — 16 November (vol. 250, no. 4983). — P. 931—936. — doi:10.1126/science.250.4983.931. — PMID 17746916. [исправить]

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne