Binomska vrsta je funkcijska vrsta funkcije
.
Če se razvije polinom:
![{\displaystyle f(x)=(1+x)^{m}\!\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3247aa7bc490321c7b84e45e8da22cebc254a1f)
okrog točke 0:
v Taylorjevo vrsto
![{\displaystyle f^{\prime }(x)=m(1+x)^{m-1}\quad f^{\prime }(0)=0\!\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72e6fb81d33983986608ba33615721308b20cba7)
![{\displaystyle f^{\prime \prime }(x)=m(m-1)(1+x)^{m-2}\qquad f^{\prime \prime }(0)=1\!\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bcec9eb4955638dd9153fb37d7af27a3970358fe)
![{\displaystyle f^{(k)}(x)=m(m-1)\ldots (m-k+1)(1+x)^{m-k}\!\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1637086016df2642290aa6cd54ede1537c3c69a8)
Opomba: če je
, ima vrsta končno členov - od
dalje so vsi enaki 0.
Če
,
, ima vrsta neskončno členov, se dobi:
![{\displaystyle f(x)=(1+x)^{m}=1+{\frac {m}{1!}}x+{\frac {m(m-1)}{2!}}x^{2}+\ldots +{\frac {m(m-1)\ldots (m-k+1)}{k!}}x^{k}\!\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19651b306705e3dd4125979cc4df031c25125b7d)
Definira se binomski simbol:
![{\displaystyle {m \choose k}={\frac {m(m-1)\ldots (m-k+1)}{k!}};\qquad m\in \mathbb {R} \quad k\in \mathbb {N} \cup {0}\!\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5108eb10636b26d5f79b31221e23a8b7ceb5c932)
![{\displaystyle {n \choose k}={\frac {n!}{(n-k)!k!}};\qquad m\in \mathbb {R} \quad k\in \mathbb {N} \cup {0}\!\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50a5e2141781c70568d7f3b25f0b8004c27fd6a9)
in tako je binomska vrsta:
![{\displaystyle (1+x)^{m}=\sum _{k=0}^{\infty }{m \choose k}x^{k}\!\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d3251cc5d13d7d69ec23f4d0a3e28bcf4efa80a8)