Linearna algebra

Nekateri predmeti, ki jih proučuje linearna algebra

Vektor

V tridimenzionalnem evklidskem prostoru te tri ravnine predstavljajo rešitve linearnih enačb, njihov presek pa skupek skupnih rešitev: v tem primeru ena točka. Modra črta je skupna rešitev dveh enačb.


Linearne transformacije

Sistemi linearnih enačb

Matrike

Lastne vrednosti in lastni vektorji

Kvadriki

Tenzorji

Linearna algebra je matematična disciplina, ki se ukvarja s proučevanjem vektorjev, vektorskih prostorov (ali linearnih prostorov), linearnih transformacij in sistemov linearnih enačb. Konkretno upodobitev linearne algebre najdemo v analitični geometriji. Vektorski prostori so osrednja tema sodobne matematike; torej se linearna algebra na široko uporablja v abstraktni algebri in funkcionalni analizi. Zelo je uporabna tudi v naravoslovnih in družboslovnih znanostih.

Nanaša na linearne enačbe, kot so:

linearne transformacije, kot so:

in njihove predstavitve v vektorskih prostorih in skozi matrice.[1][2][3]

Linearna algebra je osnova za skoraj vsa področja matematike. Na primer, linearna algebra je temeljna v sodobnih predstavitvah geometrije, vključno z definicijami osnovnih objektov, kot so črte, ravnine in rotacije. Tudi funkcionalno analizo, vejo matematične analize, lahko razumemo kot aplikacijo linearne algebre v prostorih funkcij.

Linearna algebra se uporablja tudi v velikem številu znanostih in področij tehnike, saj omogoča modeliranje številnih naravnih pojavov in učinkovito računanje s takšnimi modeli. Za nelinearne sisteme, ki jih ni mogoče modelirati z linearno algebro, se pogosto uporabljajo približki prvega reda.

  1. Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1. izd.), Chapman and Hall/CRC, ISBN 978-1420095388
  2. Strang, Gilbert (19. julij 2005), Linear Algebra and Its Applications (4th izd.), Brooks Cole, ISBN 978-0-03-010567-8
  3. Weisstein, Eric. »Linear Algebra«. From MathWorld--A Wolfram Web Resource. Wolfram. Pridobljeno 16. aprila 2012.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne