Predloga:Infopolje Element/symbol-to-oxidation-state/overview-oxidation-state

Z Ime Simbol complete main group val opomba
 
1 vodik H −1, +1 (amfoterni oksid) −1, +1 1 I
2 helij He 0 0 18 0
3 litij Li +1 (močno bazični oksid) +1 1 I
4 berilij Be 0,[1] +1,[2] +2 (amfoterni oksid) +2 2 II
5 bor B −5, −1, 0,[3] +1, +2, +3[4][5] (rahlo kisel oksid) +3 13 III
6 ogljik C −4, −3, −2, −1, 0, +1,[6] +2, +3,[7] +4[8] (rahlo kisel oksid) −4, −3, −2, −1, 0, +1, +2, +3, +4 14 IV
7 dušik N −3, −2, −1, +1, +2, +3, +4, +5 (močno kisel oksid) −3, +3, +5 15 V
8 kisik O −2, −1, 0, +1, +2 −2 16 VI
9 fluor F −1 (oksidirajoči kisik) −1 17 VII
10 neon Ne 0 0 18 0
11 natrij Na −1, +1 (močno bazični oksid) +1 1 I
12 magnezij Mg +1,[9] +2 (močno bazični oksid) +2 2 II
13 aluminij Al −2, −1, +1,[10] +2,[11] +3 (amfoterni oksid) +3 13 III
14 silicij Si −4, −3, −2, −1, 0,[12] +1,[13] +2, +3, +4 (amfoterni oksid) −4, +4 14 IV
15 fosfor P −3, −2, −1, 0,[14] +1,[15] +2, +3, +4, +5 (rahlo kisel oksid) −3, +3, +5 15 V
16 žveplo S −2, −1, 0, +1, +2, +3, +4, +5, +6 (močno kisel oksid) −2, +2, +4, +6 16 VI
17 klor Cl −1, +1, +2, +3, +4, +5, +6, +7 (močno kisel oksid) −1, +1, +3, +5, +7 17 VII
18 argon Ar 0 0 18 0
19 kalij K −1, +1 (močno bazični oksid) +1 1 I
20 kalcij Ca +1,[16] +2 (močno bazični oksid) +2 2 II
21 skandij Sc 0,[17] +1,[18] +2,[19] +3 (amfoterni oksid) +3 3 III
22 titan Ti −2, −1, 0,[20] +1, +2, +3, +4[21] (amfoterni oksid) +2, +3, +4 4 IV
23 vanadij V −3, −1, 0, +1, +2, +3, +4, +5 (amfoterni oksid) +2, +3, +4, +5 5 V
24 krom Cr −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (odvisno od oksidacijskega stanja, kisel, bazni ali amfoterni oksid) +2, +3, +6 6 VI
25 mangan Mn −3, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7 (odvisno od oksidacijskega stanja, kisel, bazni ali amfoterni oksid) +2, +4, +7 7 VII
26 železo Fe −4, −2, −1, 0, +1,[22] +2, +3, +4, +5,[23] +6, +7[24] (amfoterni oksid) +2, +3, +6 8 VIII
27 kobalt Co −3, −1, 0, +1, +2, +3, +4, +5[25] (amfoterni oksid) +2, +3 9 VIII
28 nikelj Ni −2, −1, 0, +1,[26] +2, +3, +4[27] (rahlo bazični oksid) +2 10 VIII
29 baker Cu −2, 0,[28] +1, +2, +3, +4 (rahlo bazični oksid) +1, +2 11 I
30 cink Zn −2, 0, +1, +2 (amfoterni oksid) +2 12 II
31 galij Ga −5, −4, −3,[29] −2, −1, +1, +2, +3[30] (amfoterni oksid) +3 13 III
32 germanij Ge −4 −3, −2, −1, 0,[31] +1, +2, +3, +4 (amfoterni oksid) −4, +2, +4 14 IV
33 arzen As −3, −2, −1, 0,[32] +1,[33] +2, +3, +4, +5 (rahlo kisel oksid) −3, +3, +5 15 V
34 selen Se −2, −1, +1,[34] +2, +3, +4, +5, +6 (močno kisel oksid) −2, +2, +4, +6 16 VI
35 brom Br −1, +1, +3, +4, +5, +7 (močno kisel oksid) −1, +1, +3, +5 17 VII
36 kripton Kr 0, +1, +2 rarely non-0, unk oxide 0 18 0
37 rubidij Rb −1, +1 (močno bazični oksid) +1 1 I
38 stroncij Sr +1,[35] +2 (močno bazični oksid) +2 2 II
39 itrij Y 0,[36] +1, +2, +3 (šibko bazični oksid) +3 3 III
40 cirkonij Zr −2, 0, +1,[37] +2, +3, +4 (amfoterni oksid) +4 4 IV
41 niobij Nb −3, −1, 0, +1, +2, +3, +4, +5 (rahlo kisel oksid) +5 5 V
42 molibden Mo −4, −2, −1, 0, +1,[38] +2, +3, +4, +5, +6 (močno kisel oksid) +4, +6 6 VI
43 tehnecij Tc −3, −1, 0, +1,[39] +2, +3,[39] +4, +5, +6, +7 (močno kisel oksid) +4, +7 7 VII
44 rutenij Ru −4, −2, 0, +1,[40] +2, +3, +4, +5, +6, +7, +8 (rahlo kisel oksid) +3, +4 8 VIII
45 rodij Rh −3[41], −1, 0, +1,[42] +2, +3, +4, +5, +6 (amfoterni oksid) +3 9 VIII
46 paladij Pd 0, +1, +2, +3, +4 (rahlo bazični oksid) 0, +2, +4 10 VIII
47 srebro Ag −2, −1, +1, +2, +3 (amfoterni oksid) +1 11 I
48 kadmij Cd −2, +1, +2 (rahlo bazični oksid) +2 12 II
49 indij In −5, −2, −1, +1, +2, +3[43] (amfoterni oksid) +3 13 III
50 kositer Sn −4, −3, −2, −1, 0,[44] +1,[45] +2, +3,[46] +4 (amfoterni oksid) −4, +2, +4 14 IV
51 antimon Sb −3, −2, −1, 0,[47] +1, +2, +3, +4, +5 (amfoterni oksid) −3, +3, +5 15 V
52 telur Te −2, −1, +1, +2, +3, +4, +5, +6 (rahlo kisel oksid) −2, +2, +4, +6 16 VI
53 jod I −1, +1, +3, +4, +5, +6, +7 (močno kisel oksid) −1, +1, +3, +5, +7 17 VII
54 ksenon Xe 0, +1, +2, +4, +6, +8 (redko več kot 0; šibko bazični oksid) 0 18 0
55 cezij Cs −1, +1[48] (močno bazični oksid) +1 1 I
56 barij Ba +1, +2 (močno bazični oksid) +2 2 II
57 lantan La 0,[36] +1, +2, +3 (močno bazični oksid) +3 n/a III
58 cerij Ce +1, +2, +3, +4 (rahlo bazični oksid) +3, +4 n/a -
59 prazeodim Pr 0,[36] +1,[49] +2, +3, +4, +5 (rahlo bazični oksid) +3 n/a -
60 neodim Nd 0,[36] +2, +3, +4 (rahlo bazični oksid) +3 n/a -
61 prometij Pm +2, +3 (rahlo bazični oksid) +3 n/a -
62 samarij Sm 0,[36] +2, +3 (rahlo bazični oksid) +3 n/a -
63 evropij Eu 0,[36] +2, +3 (rahlo bazični oksid) +2, +3 n/a -
64 gadolinij Gd 0,[36] +1, +2, +3 (rahlo bazični oksid) +3 n/a -
65 terbij Tb 0,[36] +1, +2, +3, +4 (šibko bazični oksid) +3 n/a -
66 disprozij Dy 0,[36] +1, +2, +3, +4 (šibko bazični oksid) +3 n/a -
67 holmij Ho 0,[36] +1, +2, +3 (bazični oksid) +3 n/a -
68 erbij Er 0,[36] +1, +2, +3 (bazični oksid) +3 n/a -
69 tulij Tm 0,[36] +2, +3 (bazični oksid) +3 n/a -
70 iterbij Yb 0,[36] +1, +2, +3 (bazični oksid) +3 n/a -
71 lutecij Lu 0,[36] +1, +2, +3 (šibko bazični oksid) +3 3 -
72 hafnij Hf −2, 0, +1, +2, +3, +4 (amfoterni oksid) +4 4 IV
73 tantal Ta −3, −1, 0, +1, +2, +3, +4, +5 (rahlo kisel oksid) +5 5 V
74 volfram W −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (rahlo kisel oksid) +4, +6 6 VI
75 renij Re −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (rahlo kisel oksid) +4 7 VII
76 osmij Os −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (rahlo kisel oksid) +4 8 VIII
77 iridij Ir −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[50] +3, +4 9 VIII
78 platina Pt −3, −2, −1, 0, +1, +2, +3, +4, +5, +6 (rahlo bazični oksid) +2, +4 10 VIII
79 zlato Au −3, −2, −1, 0,[51] +1, +2, +3, +5 (amfoterni oksid) +1, +3 11 I
80 živo srebro Hg −2 , +1, +2 (rahlo bazični oksid) +1, +2 12 II
81 talij Tl −5,[52] −2, −1, +1, +2, +3 (rahlo bazični oksid) +1, +3 13 III
82 svinec Pb −4, −2, −1, +1, +2, +3, +4 (amfoterni oksid) +2, +4 14 IV
83 bizmut Bi −3, −2, −1, +1, +2, +3, +4, +5 (rahlo kisel oksid) +3 15 V
84 polonij Po −2, +2, +4, +5,[53] +6 (amfoterni oksid) −2, +2, +4 16 VI
85 astat At −1, +1, +3, +5, +7[54] −1, +1 17 VII
86 radon Rn 0, +2, +6 0 18 0
87 francij Fr +1 (močno bazični oksid) +1 1 I
88 radij Ra +2 (pričakovano naj bi imel močno bazični oksid) +2 2 II
89 aktinij Ac +3 (močno bazični oksid) +3 n/a III
90 torij Th +1, +2, +3, +4 (šibko bazični oksid) +4 n/a -
91 protaktinij Pa +2, +3, +4, +5 (šibko bazični oksid) +5 n/a -
92 uran U +1, +2, +3,[55] +4, +5, +6 (amfoterni oksid) +4, +6 n/a -
93 neptunij Np +2, +3, +4,[56] +5, +6, +7 (amfoterni oksid) +5 n/a -
94 plutonij Pu +2, +3, +4, +5, +6, +7, +8 (amfoterni oksid) +4 n/a -
95 americij Am +2, +3, +4, +5, +6, +7 (amfoterni oksid) +3 n/a -
96 kirij Cm +3, +4, +5,[57] +6[58] (amfoterni oksid) +3 n/a -
97 berkelij Bk +2, +3, +4, +5[57] +3 n/a -
98 kalifornij Cf +2, +3, +4, +5[59][57] +3 n/a -
99 ajnštajnij Es +2, +3, +4 +3 n/a -
100 fermij Fm +2, +3 +3 n/a -
101 mendelevij Md +2, +3 +3 n/a -
102 nobelij No +2, +3 +2 n/a -
103 lavrencij Lr +3 +3 3 -
104 raderfordij Rf (+2), (+3), +4[60][61][62] (v oklepajih: napoved) (+3), +4 (v oklepajih: napoved) 4 IV
105 dubnij Db (+3), (+4), +5[61][62] (v oklepajih: napoved) +5 5 V
106 siborgij Sg 0, (+3), (+4), (+5), +6[61][62] (v oklepajih: napoved) (+4), +6 (v oklepajih: napoved) 6 VI
107 borij Bh (+3), (+4), (+5), +7[61][62] (v oklepajih: napoved) (+3), (+4), (+5), +7 (v oklepajih: napoved) 7 VII
108 hasij Hs (+2), (+3), (+4), (+6), +8[63][62][64] (v oklepajih: napoved) (+3), (+4) (v oklepajih: napoved) 8 VIII
109 majtnerij Mt (+1), (+3), (+4), (+6), (+8), (+9) (napovedano)[61][65][66][62] (+1), (+3), (+6) (napovedano) 9 VIII
110 darmštatij Ds (0), (+2), (+4), (+6), (+8) (napovedano)[61][62] (0), (+2), (+8) (napovedano) 10 VIII
111 rentgenij Rg (−1), (+1), (+3), (+5), (+7) (napovedano)[61][62][67] (+3) (napovedano) 11 I
112 kopernicij Cn 0, (+1), +2, (+4) (v oklepajih: napoved)[61][68][62] 0, +2 12 II
113 nihonij Nh (−1), (+1), (+3), (+5) (napovedano)[61][62][69] (+1), (+3) (napovedano) 13 III
114 flerovij Fl (0), (+1), (+2), (+4), (+6) (napovedano)[61][62][70] (+2) (napovedano) 14 IV
115 moskovij Mc (+1), (+3) (napovedano)[61][62] (+1), (+3) (napovedano) 15 V
116 livermorij Lv (−2),[71] (+2), (+4) (napovedano)[61] (+2) (napovedano) 16 VI
117 tenes Ts (−1), (+1), (+3), (+5) (napovedano)[62][61] (+1), (+3) (napovedano) 17 VII
118 oganeson Og (−1),[61] (0), (+1),[72] (+2),[73] (+4),[73] (+6)[61] (napovedano) (+2), (+4) (napovedano) 18 0
119 ununenij Uue (+1), (+3) (napovedano)[61] (+1) (napovedano) 1 I
120 unbinilij Ubn (+1),[74] (+2), (+4) (napovedano)[61] (+2) (napovedano) 2 II
121 unbiunij Ubu (+1), (+3) (napovedano)[61][75] (+3) (napovedano) n/a III
122 unbibij Ubb (+4) (napovedano)[76] (+4) (napovedano) n/a -
123 unbitrij Ubt (+5) (napovedano)[76] (+5) (napovedano) n/a
124 unbikvadij Ubq (+6) (napovedano)[76] (+6) (napovedano) n/a
125 unbipentij Ubp (+1), (+6), (+7) (napovedano)[76] (+6), (+7) (napovedano) n/a
126 unbiheksij Ubh (+1), (+2), (+4), (+6), (+8) (napovedano)[76] (+4), (+6), (+8) (napovedano) n/a
  1. Be(0) has been observed; see »Beryllium(0) Complex Found«. Chemistry Europe. 13. junij 2016.
  2. »Beryllium: Beryllium(I) Hydride compound data« (PDF). bernath.uwaterloo.ca. Pridobljeno 10. decembra 2007.
  3. Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). »Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond«. Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
  4. Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). »Infrared Emission Spectroscopy of BF and AIF« (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
  5. Melanie Schroeder. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden (PDF) (v nemščini). str. 139.
  6. »Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical« (PDF). Pridobljeno 6. decembra 2007.
  7. »Fourier Transform Spectroscopy of the System of CP« (PDF). Pridobljeno 6. decembra 2007.
  8. »Carbon: Binary compounds«. Pridobljeno 6. decembra 2007.
  9. Bernath, P. F.; Black, J. H.; Brault, J. W. (1985). »The spectrum of magnesium hydride« (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.
  10. Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). »Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions«. Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  11. D. C. Tyte (1964). »Red (B2Π–A2σ) Band System of Aluminium Monoxide«. Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0. S2CID 4163250.
  12. »New Type of Zero-Valent Tin Compound«. Chemistry Europe. 27. avgust 2016.
  13. Ram, R. S.; in sod. (1998). »Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD« (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  14. Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). »Carbene-Stabilized Diphosphorus«. Journal of the American Chemical Society. 130 (45): 14970–1. doi:10.1021/ja807828t. PMID 18937460.
  15. Ellis, Bobby D.; MacDonald, Charles L. B. (2006). »Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds«. Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  16. Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). »Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes«. Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  17. F. Geoffrey N. Cloke; Karl Khan; Robin N. Perutz (1991). »η-Arene complexes of scandium(0) and scandium(II)«. J. Chem. Soc., Chem. Commun. (19): 1372–1373. doi:10.1039/C39910001372.
  18. Smith, R. E. (1973). »Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals«. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015. S2CID 96908213.
  19. McGuire, Joseph C.; Kempter, Charles P. (1960). »Preparation and Properties of Scandium Dihydride«. Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
  20. Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John E. (2007). »Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]«. Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
  21. Andersson, N.; in sod. (2003). »Emission spectra of TiH and TiD near 938 nm« (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  22. Ram, R. S.; Bernath, P. F. (2003). »Fourier transform emission spectroscopy of the g4Δ–a4Δ system of FeCl«. Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
  23. Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). »Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated Iron(V)«. Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
  24. Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). »Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4«. Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  25. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2. izd.). Butterworth-Heinemann. str. 1117–1119. ISBN 978-0-08-037941-8.
  26. Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). »A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps«. Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  27. Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). »A Stable Tetraalkyl Complex of Nickel(IV)«. Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  28. Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). »A Polar Copper–Boron One-Electron σ-Bond«. J. Am. Chem. Soc. 135 (10): 3792–3795. doi:10.1021/ja4006578. PMID 23418750.
  29. Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). »Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen« (PDF). Z. Naturforsch. (v nemščini). 66b: 1107–1121.
  30. Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (diplomska naloga) (v nemščini). PhD Thesis, ETH Zurich. str. 72. doi:10.3929/ethz-a-001859893. hdl:20.500.11850/143357. ISBN 978-3728125972.
  31. »New Type of Zero-Valent Tin Compound«. Chemistry Europe. 27. avgust 2016.
  32. Abraham, Mariham Y.; Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Shaefer III, Henry F.; Schleyer, P. von R.; Robinson, Gregory H. (2010). »Carbene Stabilization of Diarsenic: From Hypervalency to Allotropy«. Chemistry: A European Journal. 16 (2): 432–5. doi:10.1002/chem.200902840. PMID 19937872.
  33. Ellis, Bobby D.; MacDonald, Charles L. B. (2004). »Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters«. Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  34. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2. izd.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  35. Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). »High-Resolution Infrared Emission Spectrum of Strontium Monofluoride« (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  36. 36,00 36,01 36,02 36,03 36,04 36,05 36,06 36,07 36,08 36,09 36,10 36,11 36,12 36,13 Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). »Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides«. Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (15. december 2003). »Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation«. Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  37. »Zirconium: zirconium(I) fluoride compound data«. OpenMOPAC.net. Pridobljeno 10. decembra 2007.
  38. »Molybdenum: molybdenum(I) fluoride compound data«. OpenMOPAC.net. Pridobljeno 10. decembra 2007.
  39. 39,0 39,1 »Technetium: technetium(III) iodide compound data«. OpenMOPAC.net. Pridobljeno 10. decembra 2007.
  40. »Ruthenium: ruthenium(I) fluoride compound data«. OpenMOPAC.net. Pridobljeno 10. decembra 2007.
  41. Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
  42. »Rhodium: rhodium(I) fluoride compound data«. OpenMOPAC.net. Pridobljeno 10. decembra 2007.
  43. Guloy, A. M.; Corbett, J. D. (1996). »Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties«. Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e. PMID 11666477.
  44. »New Type of Zero-Valent Tin Compound«. Chemistry Europe. 27. avgust 2016.
  45. »HSn«. NIST Chemistry WebBook. National Institute of Standards and Technology. Pridobljeno 23. januarja 2013.
  46. »SnH3«. NIST Chemistry WebBook. National Institure of Standards and Technology. Pridobljeno 23. januarja 2013.
  47. Anastas Sidiropoulos. »Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements« (PDF). str. 39. doi:10.4225/03/5B0F4BDF98F60. S2CID 132399530.
  48. Dye, J. L. (1979). »Compounds of Alkali Metal Anions«. Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  49. Chen, Xin; in sod. (13. december 2019). »Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters«. Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
  50. Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). »Identification of an iridium-containing compound with a formal oxidation state of IX«. Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.
  51. Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). »Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles«. Angewandte Chemie International Edition. 38 (21): 3194–3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. PMID 10556900.
  52. Dong, Z.-C.; Corbett, J. D. (1996). »Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions«. Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z.
  53. Thayer, John S. (2010). »Relativistic Effects and the Chemistry of the Heavier Main Group Elements«. Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  54. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2. izd.). Butterworth-Heinemann. str. 28. ISBN 978-0-08-037941-8.
  55. Morss, L.R.; Edelstein, N.M.; Fuger, J., ur. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd izd.). Netherlands: Springer. ISBN 978-9048131464.
  56. Np(II), (III) and (IV) have been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). »Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding«. Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMC 5431675. PMID 28553487.
  57. 57,0 57,1 57,2 Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). »Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States«. Inorg. Chem. American Chemical Society. 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
  58. Domanov, V. P.; Lobanov, Yu. V. (Oktober 2011). »Formation of volatile curium(VI) trioxide CmO3«. Radiochemistry. SP MAIK Nauka/Interperiodica. 53 (5): 453–6. doi:10.1134/S1066362211050018. S2CID 98052484.
  59. Greenwood & Earnshaw 1997, str. 1265.
  60. »Rutherfordium«. Royal Chemical Society. Pridobljeno 21. septembra 2019.
  61. 61,00 61,01 61,02 61,03 61,04 61,05 61,06 61,07 61,08 61,09 61,10 61,11 61,12 61,13 61,14 61,15 61,16 61,17 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). »Transactinides and the future elements«. V Morss; Edelstein, Norman M.; Fuger, Jean (ur.). The Chemistry of the Actinide and Transactinide Elements (3rd izd.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  62. 62,00 62,01 62,02 62,03 62,04 62,05 62,06 62,07 62,08 62,09 62,10 62,11 62,12 Fricke, Burkhard (1975). »Superheavy elements: a prediction of their chemical and physical properties«. Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Pridobljeno 4. oktobra 2013.
  63. Hoffman 2006, str. 1691.
  64. Düllmann, C. E. (2008). Investigation of group 8 metallocenes @ TASCA (PDF). 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Arhivirano iz prvotnega spletišča (PDF) dne 30. aprila 2014. Pridobljeno 28. avgusta 2020.
  65. Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). »Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties«. Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82. S2CID 96127012.
  66. Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). »How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX«. ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  67. Conradie, Jeanet; Ghosh, Abhik (15. junij 2019). »Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist«. Inorganic Chemistry. 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139. PMID 31203606.
  68. Gäggeler, Heinz W.; Türler, Andreas (2013). »Gas Phase Chemistry of Superheavy Elements«. The Chemistry of Superheavy Elements. Springer Science+Business Media. str. 415–483. doi:10.1007/978-3-642-37466-1_8. ISBN 978-3-642-37465-4. Pridobljeno 21. aprila 2018.
  69. Thayer, John S. (2010). »Relativistic Effects and the Chemistry of the Heavier Main Group Elements«. V Barysz, Maria; Ishikawa, Yasuyuki (ur.). Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Zv. 10. Springer. str. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  70. Schwerdtfeger, Peter; Seth, Michael (2002). »Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study« (PDF). Journal of Nuclear and Radiochemical Sciences. 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Pridobljeno 12. septembra 2014.
  71. Thayer, John S. (2010). »Relativistic Effects and the Chemistry of the Heavier Main Group Elements«. Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  72. Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). »Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)«. Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  73. 73,0 73,1 Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. str. 105. ISBN 978-1402013713. Pridobljeno 18. januarja 2008.
  74. Thayer, John S. (2010). »Relativistic Effects and the Chemistry of the Heavier Main Group Elements«. Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 84. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  75. Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12. september 2016). »4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra«. Chemical Physics Letters. 662: 169–175. Bibcode:2016CPL...662..169A. doi:10.1016/j.cplett.2016.09.025.
  76. 76,0 76,1 76,2 76,3 76,4 Pyykkö, Pekka (2011). »A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions«. Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne