Radioaktivnost

Mednarodni znak za radioaktivno nevarnost.

Radioaktívnost je pojav, pri katerem nestabilno atomsko jedro razpade. Pri razpadu nastane drugo jedro, obenem pa se sprosti še visokoenergijski delec. Snovi z nestabilnimi atomskimi jedri imenujemo radioaktivne snovi.

Radioaktivni razpad je stohastični (naključni) proces na ravni posameznega atoma. Skladno s kvantno mehaniko ni mogoče napovedati, kdaj bo določeno atomsko jedro razpadlo. Verjetnost, da jedro razpade, se s časom ne spreminja; vseeno je, koliko časa jedro že obstaja. Za velike skupine atomskih jeder pa lahko verjetnost za razpad skupine jeder izračunamo na osnovi izmerjenega razpolovnega časa. To je osnova radiometričnega datiranja. Zgornja in spodnja meja za razpolovni čas atomskih jeder nista znani; razpon izmerjenih vrednosti sega prek 55 velikostnih redov.

Obstaja veliko različnih vrst radioaktivnega razpada. Radioaktivni razpad (izguba energije atomskega jedra) je rezultat procesa, v katerem se ena vrsta atomskih jeder, imenovana starševski radionuklid pretvori v jedro v drugem stanju, ali v jedro z drugačnim številom protonov in nevtronov. Nastalo jedro imenujemo hčerinski nuklid. Pri nekaterih razpadih sta starševski in hčerinski nuklid različna kemijska elementa, tako da pri jedrskem razpadu nastanejo atomi drugega kemijskega elementa. Pojav imenujemo jedrska transmutacija.

Prvi razpadni procesi, ki so jih odkrili, so bili razpadi alfa, beta in gama. Pri razpadu alfa atomsko jedro izvrže delec alfa (helijevo jedro). To je najpogostejši proces izsevanja nukleonov. Pri redkejših tipih razpada pa lahko atomsko jedro izseva protone ali v primeru klasterskega razpada kar cela jedra drugih kemijskih elementov. Pri razpadu beta se bodisi en proton v atomskem jedru pretvori v nevtron ali obratno, pri čemer se izseva elektron ali pozitron ter nevtrino. Jedro lahko tudi zajame elektron iz elektronske orbitale in ob tem v procesu, imenovanem ujetje elektrona, pretvori enega od protonov v jedru v nevtron. Vsi našteti procesi vodijo v dobro definirane jedrske transmutacije.

Poznamo tudi radioaktivne razpade, ki ne vodijo v jedrske transmutacije. Vzbujeno atomsko jedro lahko v procesu, imenovanem razpad gama, izseva energijo kot žarek gama, ali pa se ta energija uporabi za izbitje orbitalnega elektrona ob interakciji z vzbujenim jedrom; pojav imenujemo notranja konverzija. Visoko vzbujena jedra z veliko nevtroni, nastala kot produkt drugih vrst razpada, včasih izgubijo energijo z izsevanjem nevtrona, pri čemer se jedro pretvori v drug izotop istega kemijskega elementa.

Druga vrsta radioaktivnih razpadov vodi v razpadne produkte, ki niso določeni, ampak lahko zaobsegajo cel razpon delov prvotnega jedra. Pri tej vrsti razpada, imenovani spontana jedrska cepitev ali fisija, se težko nestabilno jedro spontano razcepi na dve (redkeje tri) manjši hčerinski jedri, pri čemer v splošnem pride tudi do izsevanja žarkov gama, nevtronov ali drugih delcev.

Na Zemlji je 29 radioaktivnih kemijskih elementov. Med radionuklidi teh elementov je 34 takšnih, ki so starejši od našega osončja, in so znani kot prvinski nuklidi. Znani primeri so uran in torij, a mednje sodijo tudi naravni dolgoživi radioizotopi, kot denimo kalij-40. Nadaljnjih približno 50 kratkoživih radionuklidov, ki jih najdemo na Zemlji – mednje sodita radij in radon – so členi v enem od radioaktivnih nizov, ki se začenjajo z enim od prvinskih nuklidov, ter kozmogenih procesov, kot je pretvorba dušika-14 v ogljik-14 pod vplivom kozmičnih žarkov. Radionuklidi so lahko umetno ustvarjeni v pospeševalnikih ali jedrskih reaktorjih. Približno 650 takšnih radionuklidov ima razpolovni čas daljši od ene ure, radionuklidov s krajšimi razpolovnimi časi pa je več tisoč.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne