Toplotni kapacitet

Temperatura idealnog gasa je mera prosečne kinetičke energije molekula.
Temperatura Sunčeve površine (fotosfera) je 5 778 K (5 505°C). Toplota se od Sunca do Zemlje prenosi toplotnim zračenjem (Sunčeva svetlost).
Sunčeva svetlost prolazi kroz oblake.
Toplotne vibracije delova belančevine: amplituda vibracija raste s temperaturom.
Prilikom vrenja vode potrebna je toplota isparivanja da bi se voda pretvorila u vodenu paru. Za svo vreme dok traje vrenje, temperatura se ne menja i ona je u normalnim uslovima 100 °C.
Iz vrućeg tela rasprostire se toplota na sve strane nevidljivim toplotnim zracima.
Džulov uređaj iz 1845.

Toplotni kapacitet (znak C) je fizička veličina koja pokazuje koliko toplote treba nekom telu dovesti da mu se temperatura promeni za 1 K (1 °C).[1] Definisana je odnosom toplote (Q) koju telo razmenjuje s okolinom i promene temperature (∆T) tela: C=Q/∆T. Merna jedinica je džul po kelvinu (J/K).[2][3][4]

Za gasove se razlikuju specifični toplotni kapacitet kod stalnog pritiska (cp) i kod stalne zapremine (cV). Odnos ta dva kapaciteta (X = cp/cV) važna je veličina u opisivanju kružnih procesa u termodinamici, npr. jednačina za adijabatski proces je pVx = konstanta, gde je p pritisak, a V zapremina idealnog gasa. Toplotni kapacitet koji se odnosi na masu neke materije se naziva specifični toplotni kapacitet.[5]

Razlikuje se toplotni kapacitet pri stalnom pritisku (p) i pri stalnoj zapremini (V):

Merna jedinica za toplotni kapacitet sistema SI je džul po kelvinu (J/K).

Molarni toplotni kapacitet - kapacitet po molu materije je:

SI merna jedinica je džul po mol-kelvinu (J/molK).

Specifični toplotni kapacitet - kapacitet po jedinici mase:

SI merna jedinica je džul po kilogram-kelvinu (J/kgK).

Molarni se toplotni kapaciteti elemenata na dovoljno visokoj temperaturi (~300 K) međusobno se vrlo malo razlikuju i kreću se oko 26,12 J/molK. Majerova relacija daje vezu između cp,mol. i cV,mol. idealnog gasa: gde je n količina materije, a R je gasna konstanta, R=8,314 J/molK.

Različite okolnosti mogu uticati na promenu specifične toplote materije, tipično dolazi do promena agregatnog stanja. Takođe, promene pritiska ili zapremine materije tokom grejanja (što se posebno izraženo vidi kod gasova) utiču na merenje specifične toplote, iako ne utiču nužno ili izraženo na sam iznos specifične toplote. Na primer, može se posmatrati voda i iznos njene specifične toplote u tri različita seta okolnosti: pri temperaturi od 100 °C (para): 2,08 kJ/(kg·K), pri temperaturi od 25 °C (tečnost): 4,1813 kJ/(kg·K), a pri temperaturi od -10 °C (led): 2,05 kJ/(kg·K). Toplota koju je materiji potrebno dovesti da bi se promenilo agregatno stanje se ne ubraja u specifičnu toplotu, budući da temperatura tela za to vreme ne raste, već se naziva latentnom toplotom.

  1. ^ Halliday, David; Resnick, Robert (2013). Fundamentals of Physics. Wiley. стр. 524. 
  2. ^ Kittel, Charles (2005). Introduction to Solid State Physics (8th изд.). Hoboken, New Jersey, USA: John Wiley & Sons. стр. 141. ISBN 978-0-471-41526-8. 
  3. ^ Blundell, Stephen (2001). Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics (1st изд.). Hoboken, New Jersey, USA: Oxford University Press. стр. 27. ISBN 978-0-19-850591-4. 
  4. ^ Kittel, Charles (2005). Introduction to Solid State Physics (8th изд.). Hoboken, New Jersey, USA: John Wiley & Sons. стр. 141. ISBN 978-0-471-41526-8. 
  5. ^ Hrvatska enciklopedija (LZMK); broj 10 (Sl-To), str. 811. Za izdavača: Leksikografski zavod Miroslav Krleža, Zagreb 2008.g. ISBN 978-953-6036-40-0.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne