Logik, Formellt system |
---|
Logiska system |
|
Predikatlogik är en del av den matematiska logiken. Medan man i satslogiken bara kan sätta samman färdiga satser till mer komplicerade satser (exempelvis bilda , om och är satser), kan man i predikatlogiken resonera om företeelser och deras egenskaper. För att uttrycka A och B, kan man i predikatlogiken använda predikat. Exempelvis kan representera är udda så att betyder är udda. Man kan också bilda flerställiga relationer , exempelvis för att representera relationen större än. I mängdteori kan hela matematiken formuleras med hjälp av predikatlogik med en enda relation , som uttrycker att en mängd är element i en annan. Samma logiska operationer som finns i satslogiken finns även i predikatlogiken. Dessutom finns all- och existens-kvantorer som uttrycker att något gäller för alla respektive för något objekt.
Antag att vi vill uttala oss om att om någonting har två specifika egenskaper, så har det den andra av dessa egenskaper. Vi kan symbolisera det på följande sätt: . Det läses: för varje x gäller, att om x har egenskapen P, och x har egenskapen Q, så har x egenskapen Q.
Ett annat exempel är , som säger: för alla x gäller, att för alla y gäller, att om x är lika med y, så har x egenskapen P, om och endast om y har egenskapen P. Vad detta betyder är egentligen att om x och y betecknar samma föremål, så är egenskaperna för x och y lika.
Att man kan formulera predikatlogiken så att den blir fullständig bevisades av Kurt Gödel i hans doktorsavhandling.