Epektong greenhouse

Isang representasyon ng palitan ng enerhiya sa pagitan ng Araw, ibabaw ng mundo, atmospera, at kalawakan. Ang kakayahan ng atmospera na makuha at mapaikot muli ang enerhiya mula sa ibabaw ng mundo ay ang nagpapakita ng epektong greenhouse.

Ang epektong greenhouse (Ingles, greenhouse effect) ay ang proseso kung saan mas malaki ang iniaambag na init sa ibabaw ng isang planeta ng radyasyon mula sa atmospera nito kumpara sa kung ang planeta ay walang atmospera.[1][2]

Kung ang atmospera ng isang planeta ay naglalaman ng mga radyatib-aktibong gas (greenhouse gas) ikakalat ng atmospera ang enerhiya sa lahat ng direksiyon. Ilang bahagi ng radyasyong ito ay mapupunta sa ibabaw ng planeta, na dahil dito ay iinit. Ang bahaging ito ng radyasyon (na maaaring isipin bilang ang lakas ng epektong greenhouse) ay nakasalalay sa temperatura ng atmospera at sa dami ng greenhouse gas dito.

Sa mundong ito, ang atmospera ay iniinit sa pamamagitan ng infrared na radyasyong termal, pag-absorb ng shorter-wavelength radiant energy mula sa araw, at mga convective na heat flux mula sa ibabaw ng lupa. Nagkakalat ng enerhiya ang mga greenhouse gas sa atmospera, kung saan ang iba ay napupunta sa mas mababang bahagi ng atmospera. Ang mekanismo na ito ay tinatawag na epektong greenhouse).[3]

Malaki ang tulong ng natural na epektong greenhouse sa mundo upang mapagpatuloy ang buhay. Subalit ang natural na penomenang ito ay napalakas ng mga gawaing-tao (tulad ng pagsusunog ng fossil fuel at deporestasyon), at ito'y naging sanhi ng global warming.[4]

Ang pangalan ng mekanismong ito ay (maling) ipinangalan sa isang greenhouse.[2][5][6]

  1. "Annex II Glossary" Naka-arkibo 2018-11-03 sa Wayback Machine..
  2. 2.0 2.1 A concise description of the greenhouse effect is given in the Intergovernmental Panel on Climate Change Fourth Assessment Report, "What is the Greenhouse Effect?"
  3. Vaclav Smil (2003). The Earth's Biosphere: Evolution, Dynamics, and Change. MIT Press. p. 107. ISBN 978-0-262-69298-4.
  4. IPCC AR4 WG1 (2007), Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L., eds., Climate Change 2007: The Physical Science Basis Naka-arkibo 2018-11-30 sa Wayback Machine., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 978-0-521-88009-1  (pb: 978-0-521-70596-7)
  5. Schroeder, Daniel V. (2000). An introduction to thermal physics. San Francisco, California: Addison-Wesley. pp. 305–7. ISBN 0-321-27779-1. ... this mechanism is called the greenhouse effect, even though most greenhouses depend primarily on a different mechanism (namely, limiting convective cooling).
  6. Wood, R.W. (1909). "Note on the Theory of the Greenhouse". Philosophical Magazine. 17: 319–320. doi:10.1080/14786440208636602. When exposed to sunlight the temperature rose gradually to 65 °C., the enclosure covered with the salt plate keeping a little ahead of the other because it transmitted the longer waves from the Sun, which were stopped by the glass. In order to eliminate this action the sunlight was first passed through a glass plate." "it is clear that the rock-salt plate is capable of transmitting practically all of it, while the glass plate stops it entirely. This shows us that the loss of temperature of the ground by radiation is very small in comparison to the loss by convection, in other words that we gain very little from the circumstance that the radiation is trapped.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne