Sa matematika, ang grupo ay isang pangkat (set) na mayroong isang operasyon na pinagsasama-sama ang kahit anumang dalawang elemento upang makabuo ng isang ikatlong elemento habang naikokonekta ito, gayon din, ang pagkakaroon nito ng elementong identidad at elementong kabaligtaran. Hinahawakan ng tatlong kondisyon na ito, tinatatawag na aksiyomang grupo, ang para sa mga sistema ng bilang at marami pa ibang kayariang pangmatematika. Halimbawa, binubuo ng isang grupo ang mga buumbilang kasama ang adisyong operasyon. Bagaman, nakahiwalay ang pormulasyon ng mga aksiyoma mula sa konkretong kalikasan ng grupo at operasyon nito. Pinapahintulot nitong hawakan ng isa ang mga entidad ng mga ibang-iba pangmatematikang pinagmulan sa isang sunud-sunurang paraan, habang ipinipanatili ang mahalagang estruktural na aspeto ng maraming bagay sa abstraktong alhebra at lampas pa nito. Ang pagkakaroon ng mga grupo sa lahat ng dako-pareho sa loob at labas ng matematika-ay ginagawa silang isang sentral na nag-oorginisang prinsipyo ng kontemporaryong matematika.[1][2]