Bernoulli ilkesi

Venturimetreye giren bir hava akımı

Akışkanlar dinamiğinde Bernoulli prensibi, sürtünmesiz bir akış boyunca, hızda gerçekleşen bir artışın aynı anda ya basınçta ya da akışkanın potansiyel enerjisinde azalmaya neden olduğunu ifade eder.[1][2] Bernoulli prensibi, adını Hollanda-İsviçre kökenli matematikçi Daniel Bernoulli'den almıştır. Bernoulli bu prensibini 1738 yılında Hydrodynamica adlı kitabında yayınlamıştır.[3]

Bazen Bernoulli denklemi olarak da geçen bu prensip farklı türlerde akışkan debileri üzerinde uygulanabilir. Aslında farklı türlerde akışkanlar için farklı Bernoulli denklemleri vardır. Bernoulli prensibinin en basit hâli sıkıştırılamaz akışkanlar (örn. çoğu sıvı akışkanlar) ve düşük Mach sayısında hareket eden sıkıştırılabilir akışkanlar (örn. gazlar) için geçerlidir.

Bernoulli prensibi, enerjinin korunumu yasasından çıkarılabilir. Buna göre sabit bir akımda, bir yolda hareket eden akışkanın sahip olduğu tüm mekanik enerjilerin toplamı yine bu yol üzerindeki her noktada eşittir. Bu ifade kinetik ve potansiyel enerji toplamlarının sabit olduğunu ifade eder. Bu yüzden akışkanın hızındaki herhangi bir artış, akışkanın dinamik basıncını ve kinetik enerjisini orantılı olarak arttırırken statik basıncını ve potansiyel enerjisini düşürür.

Bernoulli prensibi, direkt olarak Newton'un 2. yasasından da elde edilebilir. Eğer küçük hacimli bir akışkan yatay olarak yüksek basınçlı bölgeden düşük basınçlı bölgeye doğru ilerliyorsa, arkada; önde olduğundan daha fazla basınç var demektir. Bu, akışkan üzerinde net bir kuvvet uygulayarak akım çizgisi boyunca hızlanmasını sağlar.[4][5]

  1. ^ Clancy, L.J., Aerodynamics, Chapter 3.
  2. ^ Batchelor, G.K. (1967), Section 3.5, pp. 156–64.
  3. ^ "Hydrodynamica". Britannica Online Encyclopedia. 14 Mayıs 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2008. 
  4. ^ "If the particle is in a region of varying pressure (a non-vanishing pressure gradient in the x-direction) and if the particle has a finite size l, then the front of the particle will be ‘seeing’ a different pressure from the rear. More precisely, if the pressure drops in the x-direction (dp/dx < 0) the pressure at the rear is higher than at the front and the particle experiences a (positive) net force. According to Newton’s second law, this force causes an acceleration and the particle’s velocity increases as it moves along the streamline... Bernoulli’s equation describes this mathematically (see the complete derivation in the appendix)."Babinsky, Holger (Kasım 2003), "How do wings work?" (PDF), Physics Education 
  5. ^ "Acceleration of air is caused by pressure gradients. Air is accelerated in direction of the velocity if the pressure goes down. Thus the decrease of pressure is the cause of a higher velocity." Weltner, Klaus; Ingelman-Sundberg, Martin, Misinterpretations of Bernoulli's Law, 29 Nisan 2009 tarihinde kaynağından arşivlendi, erişim tarihi: 26 Kasım 2011 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne