Trigonometri tarihi

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği (Rhind Matematiksel Papirüsü) ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı.[1] Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı.[2] Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata (MS 6. yüzyıl) nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği (Isaac Newton ve James Stirling) ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

Matematiğin doğrudan doğruya astronomiden çıkmış bir kolu olan trigonometri'nin bazı ögeleri, daha Babilliler ve Mısırlılar döneminde biliniyor, eski Yunanlar Menelaos’un Küresel geometrisi aracılığıyla, bir daire içine çizilebilen dörtgenden yola çıkarak daire yaylarının kirişlerinin değerlerini veren çizgiler oluşturuyorlardı. Daha sonra Araplar, yay kirişlerinin yerine sinüsleri koyup; tanjant, kotanjant, sekant, kosekant kavramlarını geliştirdiler.

Batı’da Nasîrüddin Tûsî’den büyük ölçüde yararlanan Regiomontanus’un Üçgen Üstüne adlı eseriyle gerçek trigonometri doğmuş oldu. François Viète ve Simon Stevin, hesaplarda ondalık sayılardan yararlandılar. John Napier logaritmayı işe kattı. Isaac Newton ve öğrencileri trigonometri fonksiyonlarının ve logaritmalarının hesabına tam serileri uyguladılar. Daha sonra da Leonhard Euler, birim olarak trigonometrik cetvelin yarıçapını alarak, modern trigonometrinin temellerini attı.

  1. ^ A history of ancient mathematical astronomy. 1. Springer-Verlag. 1975. s. 744. ISBN 978-3-540-06995-9. 20 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Kasım 2020. 
  2. ^ Katz 1998

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne