2i

2i
2i
數表高斯整數
<< −3i −2i −i 0  i  2i  3i >>

高斯平面上的位置
命名
名稱2i
負四的平方根
二虛數單位
性質
高斯整數分解
絕對值2[1]
以此為的多項式或函數
表示方式
2倍虛數單位
代數形式
十进制2i
-1+i进制1110100
2i进制10
高斯整數導航
2i
−1+i i 1+i
−2 −1 0 1 2
−1−i i 1−i
−2i

是在虛數軸正向距離原點兩個單位的純虛數,屬於高斯整數[2]:13,為虛數單位的兩倍[2]:12,同時也是負四的平方根[2]:12[3][4]:ix[5][6][7][8],是方程式的正虛根[3][9]:10。日常生活中通常不會用來計量事物,例如無法具體地描述何謂個人,邏輯上個人並沒有意義。[10]部分書籍或教科書偶爾會使用來做虛數的例子或題目。[11]

高斯平面上,與相鄰的高斯整數有(上下相鄰;純虛數)以及(左右相鄰),然而複數不具備有序性,即無法判斷間的大小關係,因此無法定義何者為的前一個虛數、何者為的下一個虛數。

−1+3i 3i 1+3i
−1+2i 2i 1+2i
−1+i i 1+i
相鄰的高斯整數示意圖
  1. ^ What is 2i equal to?. geeksforgeeks.org. [2022-09-15]. (原始内容存档于2022-09-15). 
  2. ^ 2.0 2.1 2.2 Mokhithi, Mashudu and Shock, Jonathan, Introduction to Complex Numbers (PDF), Jonathan Shock, 2020 [2022-06-23], (原始内容存档 (PDF)于2022-07-04) 
  3. ^ 3.0 3.1 Complex or Imaginary Numbers. themathpage.com. [2022-06-23]. (原始内容存档于2022-07-13). 
  4. ^ Hart, P. The Book of Imaginary Indians: Ancient Traditions and Modern Caricatures in the White Man's Quest for Meaning. iUniverse. 2008 [2022-06-23]. ISBN 9780595435036. (原始内容存档于2022-08-20). 
  5. ^ A brief history to imaginary numbers. sciencefocus.com. 2019-06-21 [2022-06-23]. (原始内容存档于2022-07-12). 
  6. ^ Williams, Travis D. King Lear, Without the Mathematics: From Reading Mathematics to Reading Mathematically. The Palgrave Handbook of Literature and Mathematics (Springer). 2021: 399–418. 
  7. ^ Neuman, Yrsa. Moore’s Paradox and Limits in Language Use. Wittgenstein and the Limits of Language (Routledge). 2019: 159–171. 
  8. ^ Parker, Barry. Fractals. Chaos in the Cosmos (Springer). 1996: 129–154. 
  9. ^ Complex Numbers and the Complex Exponential (PDF). people.math.wisc.edu. [2022-06-23]. (原始内容存档 (PDF)于2022-01-21). 
  10. ^ Abubakr, Mohammed. On logical extension of algebraic division. arXiv preprint arXiv:1101.2798. 2011 [2022-06-23]. doi:10.48550/ARXIV.1101.2798. (原始内容存档于2022-07-04). 
  11. ^ 中學數學實用詞典, 九章出版社, 孫文先, P.22 中的示範其解為2i, ISBN 957-603-093-5

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne