This article may be too technical for most readers to understand.(January 2020) |
Semiconductor device fabrication |
---|
MOSFET scaling (process nodes) |
This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. (September 2024) |
In semiconductor manufacturing, the "7 nm" process is a term for the MOSFET technology node following the "10 nm" node, defined by the International Roadmap for Devices and Systems (IRDS), which was preceded by the International Technology Roadmap for Semiconductors (ITRS). It is based on FinFET (fin field-effect transistor) technology, a type of multi-gate MOSFET technology.
As of 2021, the IRDS Lithography standard gives a table of dimensions for the "7 nm" node,[1] with examples given below:
Calculated Value | nm |
---|---|
Minimum half pitch (DRAM, MPU metal) | 18 |
Minimum half pitch (Flash, MPU fin, LGAA) | 15 |
Minimum required overlay (OL) (DRAM, Flash, MPU) | 3.6 |
Gate pitch | 54 |
Gate length | 20 |
The 2021 IRDS Lithography standard is a retrospective document, as the first volume production of a "7 nm" branded process was in 2016 with Taiwan Semiconductor Manufacturing Company's (TSMC) production of 256Mbit SRAM memory chips using a "7nm" process called N7.[2] Samsung started mass production of their "7nm" process (7LPP) devices in 2018.[3] These process nodes had the same approximate transistor density as Intel's "10 nm Enhanced Superfin" node, later rebranded "Intel 7."[4]
Since at least 1997, the length scale of a process node has not referred to any particular dimension on the integrated circuits, such as gate length, metal pitch, or gate pitch, as new lithography processes no longer uniformly shrank all features on a chip. By the late 2010s, the length scale had become a commercial name[5] that indicated a new generation of process technologies, without any relation to physical properties.[6][7][8] Previous ITRS and IRDS standards had insufficient guidance on process node naming conventions to address the widely varying dimensions on a chip, leading to a divergence between how foundries branded their lithography and the actual dimensions their process nodes achieved.
The first mainstream "7nm" mobile processor intended for mass market use, the Apple A12 Bionic, was announced at Apple's September 2018 event.[9] Although Huawei announced its own "7nm" processor before the Apple A12 Bionic, the Kirin 980 on August 31, 2018, the Apple A12 Bionic was released for public, mass market use to consumers before the Kirin 980. Both chips were manufactured by TSMC.[10]
In 2019,[11] AMD released their "Rome" (EPYC 2) processors for servers and datacenters, which are based on TSMC's N7 node[12] and feature up to 64 cores and 128 threads. They also released their "Matisse" consumer desktop processors with up to 16 cores and 32 threads. However, the I/O die on the Rome multi-chip module (MCM) is fabricated with the GlobalFoundries' 14nm (14HP) process, while the Matisse's I/O die uses the GlobalFoundries' "12nm" (12LP+) process. The Radeon RX 5000 series is also based on TSMC's N7 process.
tsmc
was invoked but never defined (see the help page).