This scientific article needs additional citations to secondary or tertiary sources. (November 2017) |
In mathematics and theoretical physics (especially twistor string theory), an amplituhedron is a geometric structure introduced in 2013 by Nima Arkani-Hamed and Jaroslav Trnka. It enables simplified calculation of particle interactions in some quantum field theories. In planar N = 4 supersymmetric Yang–Mills theory, also equivalent to the perturbative topological B model string theory in twistor space, an amplituhedron is defined as a mathematical space known as the positive Grassmannian.[1][2]
Amplituhedron theory challenges the notion that spacetime locality and unitarity are necessary components of a model of particle interactions. Instead, they are treated as properties that emerge from an underlying phenomenon.[3][4]
The connection between the amplituhedron and scattering amplitudes is a conjecture that has passed many non-trivial checks, including an understanding of how locality and unitarity arise as consequences of positivity.[1] Research has been led by Nima Arkani-Hamed. Edward Witten described the work as "very unexpected" and said that "it is difficult to guess what will happen or what the lessons will turn out to be".[5]