Artificial reef

Reef balls are just one type of structure used in the construction of artificial reefs.

An artificial reef (AR) is a human-created freshwater or marine benthic structure.[1] Typically built in areas with a generally featureless bottom to promote marine life, it may be intended to control erosion, protect coastal areas, block ship passage, block the use of trawling nets,[2] support reef restoration, improve aquaculture, or enhance scuba diving and surfing.[3] Early artificial reefs were built by the Persians and the Romans.

An opportunity artificial reef is built from objects that were intended for other purposes,[4] such as sinking oil rigs (through the Rigs-to-Reefs program), scuttling ships, or by deploying rubble or construction debris. Shipwrecks may become artificial reefs when preserved on the seafloor. A conventional artificial reef uses materials such as concrete, which can be molded into specialized forms (e.g. reef balls). Green artificial reefs incorporate renewable and organic materials such as vegetable fibres and seashells to improve sustainability and reduce energy consumption, pollution, and greenhouse gas emissions.[4] In some cases, artificial reefs have been developed as artworks.

Artificial reefs generally provide hard surfaces where algae and invertebrates such as barnacles, corals, and oysters attach and spaces where different sizes of fishes can hide. The accumulation of attached marine life in turn provides intricate structures and food for assemblages of fish.[1][5] The ecological impact of an artificial reef depends on multiple factors including where it is situated, how it is constructed, and the ages and types of species involved.[6][7][8] While the artificial reefs allow for coral growth, it changes the ecosystem as the relative growth for different species is not always the same. Studies have found that macroalgal, cyanobacterial groups, and coral that are fast growing, grow in artificial reefs at different rates than they would grow in natural reefs.[9]

Considerable research is being done into construction methods and the effects of artificial reefs.[3][8][10] Many of the materials used early on are now considered undesirable.[6] A 2001 literature review suggested that about half of the reefs studied met their objectives.[11] Long-term planning and ongoing management were identified as essential factors in success.[11][12][10] A more recent analysis of reefs world wide between 1990 and 2020 concludes that artificial reefs can be useful tools for restoring marine ecosystems if they are strategically designed to suit their specific location and its resource needs.[6]

  1. ^ a b Seaman, Jr, William (2013). Artificial Habitats for Marine and Freshwater Fisheries. Academic Press. ISBN 978-0-08-057117-1.
  2. ^ Gray, Denis D. (June 2, 2018). "Cambodia volunteers step up battle against illegal fishing". Nikkei Asia. Retrieved 16 June 2023.
  3. ^ a b Cite error: The named reference Airoldi was invoked but never defined (see the help page).
  4. ^ a b Carral, Luis; Camba Fabal, Carolina; Lamas Galdo, Mª Isabel; Rodríguez-Guerreiro, Mª Jesús; Cartelle Barros, Juan José (28 November 2020). "Assessment of the Materials Employed in Green Artificial Reefs for the Galician Estuaries in Terms of Circular Economy". International Journal of Environmental Research and Public Health. 17 (23): 8850. doi:10.3390/ijerph17238850. PMC 7730678. PMID 33260753.
  5. ^ Bakx, Kyle (May 28, 2023). "Concrete solutions Fishermen are sinking boats and dumping concrete in the Gulf of Mexico – to save the fish". CBC News.
  6. ^ a b c Cite error: The named reference Bracho-Villavicencio was invoked but never defined (see the help page).
  7. ^ Komyakova, Valeriya; Chamberlain, Dean; Swearer, Stephen E. (1 November 2021). "A multi-species assessment of artificial reefs as ecological traps". Ecological Engineering. 171: 106394. Bibcode:2021EcEng.17106394K. doi:10.1016/j.ecoleng.2021.106394. ISSN 0925-8574.
  8. ^ a b Macura, Biljana; Byström, Pär; Airoldi, Laura; Eriksson, Britas Klemens; Rudstam, Lars; Støttrup, Josianne G. (12 March 2019). "Impact of structural habitat modifications in coastal temperate systems on fish recruitment: a systematic review". Environmental Evidence. 8 (1): 14. Bibcode:2019EnvEv...8...14M. doi:10.1186/s13750-019-0157-3. hdl:11577/3401331. ISSN 2047-2382. S2CID 84831487.
  9. ^ Miller, M. W.; Valdivia, A.; Kramer, K. L.; Mason, B.; Williams, D. E.; Johnston, L. (2009-07-28). "Alternate benthic assemblages on reef restoration structures and cascading effects on coral settlement". Marine Ecology Progress Series. 387: 147–156. Bibcode:2009MEPS..387..147M. doi:10.3354/meps08097. ISSN 0171-8630.
  10. ^ a b Lima, Juliano Silva; Zalmon, Ilana Rosental; Love, Milton (1 March 2019). "Overview and trends of ecological and socioeconomic research on artificial reefs". Marine Environmental Research. 145: 81–96. Bibcode:2019MarER.145...81L. doi:10.1016/j.marenvres.2019.01.010. ISSN 0141-1136. PMID 30837123. S2CID 73481444.
  11. ^ a b Baine, Mark (January 2001). "Artificial reefs: a review of their design, application, management and performance". Ocean & Coastal Management. 44 (3–4): 241–259. Bibcode:2001OCM....44..241B. doi:10.1016/S0964-5691(01)00048-5.
  12. ^ Brochier, Timothée; Brehmer, Patrice; Mbaye, Adama; Diop, Mamadou; Watanuki, Naohiko; Terashima, Hiroaki; Kaplan, David; Auger, Pierre (17 August 2021). "Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions". Scientific Reports. 11 (1): 16698. Bibcode:2021NatSR..1116698B. doi:10.1038/s41598-021-95454-0. ISSN 2045-2322. PMC 8371003. PMID 34404822.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne