Autoxidation

Autoxidation (sometimes auto-oxidation) refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark.[1] The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid,[2] the 'drying' of varnishes and paints, and the perishing of rubber.[3] It is also an important concept in both industrial chemistry and biology.[4] Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

The common mechanism is a free radical chain reaction, where the addition of oxygen gives rise to hydroperoxides and their associated peroxy radicals (ROO•).[5] Typically, an induction period is seen at the start where there is little activity; this is followed by a gradually accelerating take-up of oxygen, giving an autocatalytic reaction which can only be kept in check by the use of antioxidants. Unsaturated compounds are the most strongly affected but many organic materials will oxidise in this way given time.

Although autoxidation is usually undesirable, it has been exploited in chemical synthesis. In these cases the term 'autoxidation' is often used more broadly to include spontaneous reactions with oxygen at elevated temperatures, such as in the Cumene process.

  1. ^ Foote, Christopher S. (1996). "2. Autoxidation". Active Oxygen in Chemistry. Dordrecht: Springer Netherlands. pp. 24–65. ISBN 978-94-007-0874-7. doi:10.1007/978-94-007-0874-7_2
  2. ^ Holman, Ralph T. (January 1954). "Autoxidation of fats and related substances". Progress in the Chemistry of Fats and Other Lipids. 2: 51–98. doi:10.1016/0079-6832(54)90004-X.
  3. ^ Helberg, Julian; Pratt, Derek A. (2021). "Autoxidation vs. antioxidants – the fight for forever". Chemical Society Reviews. 50 (13): 7343–7358. doi:10.1039/D1CS00265A. PMID 34037013.
  4. ^ Frank, Charles E. (February 1950). "Hydrocarbon Autoxidation". Chemical Reviews. 46 (1): 155–169. doi:10.1021/cr60143a003. PMID 24537520.
  5. ^ Simic, Michael G. (February 1981). "Free radical mechanisms in autoxidation processes". Journal of Chemical Education. 58 (2): 125. Bibcode:1981JChEd..58..125S. doi:10.1021/ed058p125.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne