Chapman function

Graph of ch(x, z)

A Chapman function describes the integration of atmospheric absorption along a slant path on a spherical Earth, relative to the vertical case. It applies to any quantity with a concentration decreasing exponentially with increasing altitude. To a first approximation, valid at small zenith angles, the Chapman function for optical absorption is equal to

where z is the zenith angle and sec denotes the secant function.

The Chapman function is named after Sydney Chapman, who introduced the function in 1931.[1]

  1. ^ Chapman, S. (1 September 1931). "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence". Proceedings of the Physical Society. 43 (5): 483–501. Bibcode:1931PPS....43..483C. doi:10.1088/0959-5309/43/5/302.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne