Degrees of freedom (mechanics)

In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields.

The position of a single railcar (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track. A train of rigid cars connected by hinges to an engine still has only one degree of freedom because the positions of the cars behind the engine are constrained by the shape of the track.

An automobile with highly stiff suspension can be considered to be a rigid body traveling on a plane (a flat, two-dimensional space). This body has three independent degrees of freedom consisting of two components of translation and one angle of rotation. Skidding or drifting is a good example of an automobile's three independent degrees of freedom.

The position and orientation of a rigid body in space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom.

The exact constraint mechanical design method manages the degrees of freedom to neither underconstrain nor overconstrain a device.[1]

  1. ^ Hale, Layton C. (1999). Principles and techniques for designing precision machines (PDF) (PhD). Massachusetts Institute of Technology.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne