Donaldson's theorem

In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalizable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers. The original version[1] of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.[2]

  1. ^ Donaldson, S. K. (1983-01-01). "An application of gauge theory to four-dimensional topology". Journal of Differential Geometry. 18 (2). doi:10.4310/jdg/1214437665. ISSN 0022-040X.
  2. ^ Donaldson, S. K. (1987-01-01). "The orientation of Yang-Mills moduli spaces and 4-manifold topology". Journal of Differential Geometry. 26 (3). doi:10.4310/jdg/1214441485. ISSN 0022-040X. S2CID 120208733.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne