The Ehrenfest model (or dog–flea model) of diffusion was proposed by Tatiana and Paul Ehrenfest to explain the second law of thermodynamics.[1][2] The model considers N particles in two containers. Particles independently change container at a rate λ. If X(t) = i is defined to be the number of particles in one container at time t, then it is a birth–death process with transition rates
and equilibrium distribution .
Mark Kac proved in 1947 that if the initial system state is not equilibrium, then the entropy, given by
is monotonically increasing (H-theorem). This is a consequence of the convergence to the equilibrium distribution.
In der üblichen Formulierung besagt das H-theorem: Wenn ein sich selbst überlassenes kinetisches Gasmodell im Laufe seiner Bewegung die Zustände ...Z1, Z2....Zn ... (A) zu den Zeiten T1, T2.... Tn... durchlauft, so gelten für die konsekutiven Werte der Grössen H die Ungleichungen ....H1 > H2 > H3 .... > Hn .... (1).