Fair coin

A fair coin, when tossed, should have an equal chance of landing either side up

In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

John Edmund Kerrich performed experiments in coin flipping and found that a coin made from a wooden disk about the size of a crown and coated on one side with lead landed heads (wooden side up) 679 times out of 1000.[1] In this experiment the coin was tossed by balancing it on the forefinger, flipping it using the thumb so that it spun through the air for about a foot before landing on a flat cloth spread over a table. Edwin Thompson Jaynes claimed that when a coin is caught in the hand, instead of being allowed to bounce, the physical bias in the coin is insignificant compared to the method of the toss, where with sufficient practice a coin can be made to land heads 100% of the time.[2] Exploring the problem of checking whether a coin is fair is a well-established pedagogical tool in teaching statistics.

  1. ^ Kerrich, John Edmund (1946). An experimental introduction to the theory of probability. E. Munksgaard.
  2. ^ Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Cambridge, UK: Cambridge University Press. p. 318. ISBN 9780521592710. Archived from the original on 2002-02-05. anyone familiar with the law of conservation of angular momentum can, after some practice, cheat at the usual coin-toss game and call his shots with 100 per cent accuracy. You can obtain any frequency of heads you want; and the bias of the coin has no influence at all on the results!{{cite book}}: CS1 maint: bot: original URL status unknown (link)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne