Process type | Mechanical |
---|---|
Industrial sector(s) | Mining |
Main technologies or sub-processes | Fluid pressure |
Product(s) | Natural gas, petroleum |
Inventor | Floyd Farris, Joseph B. Clark (Stanolind Oil and Gas Corporation) |
Year of invention | 1947 |
Fracking |
---|
By country |
Environmental impact |
Regulation |
Technology |
Politics |
Hydraulic fracturing[a] is a well stimulation technique involving the fracturing of formations in bedrock by a pressurized liquid. The process involves the high-pressure injection of "fracking fluid" (primarily water, containing sand or other proppants suspended with the aid of thickening agents) into a wellbore to create cracks in the deep rock formations through which natural gas, petroleum, and brine will flow more freely. When the hydraulic pressure is removed from the well, small grains of hydraulic fracturing proppants (either sand or aluminium oxide) hold the fractures open.[1]
Hydraulic fracturing began as an experiment in 1947,[2] and the first commercially successful application followed in 1949. As of 2012, 2.5 million "frac jobs" had been performed worldwide on oil and gas wells, over one million of those within the U.S.[3][4] Such treatment is generally necessary to achieve adequate flow rates in shale gas, tight gas, tight oil, and coal seam gas wells.[5] Some hydraulic fractures can form naturally in certain veins or dikes.[6] Drilling and hydraulic fracturing have made the United States a major crude oil exporter as of 2019,[7] but leakage of methane, a potent greenhouse gas, has dramatically increased.[8][9] Increased oil and gas production from the decade-long fracking boom has led to lower prices for consumers, with near-record lows of the share of household income going to energy expenditures.[10][11]
Hydraulic fracturing is highly controversial.[12] Its proponents highlight the economic benefits of more extensively accessible hydrocarbons (such as petroleum and natural gas),[13][14] the benefits of replacing coal with natural gas, which burns more cleanly and emits less carbon dioxide (CO2),[15][16] and the benefits of energy independence.[17] Opponents of fracking argue that these are outweighed by the environmental impacts, which include groundwater and surface water contamination,[18] noise and air pollution, the triggering of earthquakes, and the resulting hazards to public health and the environment.[19][20] Research has found adverse health effects in populations living near hydraulic fracturing sites,[21][22] including confirmation of chemical, physical, and psychosocial hazards such as pregnancy and birth outcomes, migraine headaches, chronic rhinosinusitis, severe fatigue, asthma exacerbations and psychological stress.[23] Adherence to regulation and safety procedures are required to avoid further negative impacts.[24]
The scale of methane leakage associated with hydraulic fracturing is uncertain, and there is some evidence that leakage may cancel out any greenhouse gas emissions benefit of natural gas relative to other fossil fuels.[25][26]
Increases in seismic activity following hydraulic fracturing along dormant or previously unknown faults are sometimes caused by the deep-injection disposal of hydraulic fracturing flowback (a byproduct of hydraulically fractured wells),[27] and produced formation brine (a byproduct of both fractured and non-fractured oil and gas wells).[28] For these reasons, hydraulic fracturing is under international scrutiny, restricted in some countries, and banned altogether in others.[29][30][31] The European Union is drafting regulations that would permit the controlled application of hydraulic fracturing.[32]
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).
ECStimTech
was invoked but never defined (see the help page).Fracmaps
was invoked but never defined (see the help page).Charlez
was invoked but never defined (see the help page).{{cite journal}}
: CS1 maint: year (link)
The shale-drilling frenzy in the Permian has enabled the United States not only to reduce crude-oil imports, but even to become a major exporter [...] New technologies for drilling and hydraulics fracturing helped bring the break-even price
During much of the fracking boom, the US economy grew and emissions declined. One study found that between 2005 and 2012, fracking created 725,000 jobs. That's largely due to natural gas from fracking displacing coal in electricity production.
... hydraulic fracturing techniques spurred a historic U.S. production boom during the decade that has driven down consumer prices, buoyed the national economy and reshaped geopolitics.
WEO2012 Special
was invoked but never defined (see the help page).HeatOnGas
was invoked but never defined (see the help page).EHP VJBrown
was invoked but never defined (see the help page).Kim
was invoked but never defined (see the help page).interpress08072013
was invoked but never defined (see the help page).Bweek 31.03.2011
was invoked but never defined (see the help page).Bweek 04.10.2011
was invoked but never defined (see the help page).recommendation
was invoked but never defined (see the help page).