Kasner metric

Figure 1. Dynamics of Kasner metrics eq. 2 in spherical coordinates towards singularity. The Lifshitz-Khalatnikov parameter is u=2 (1/u=0.5) and the r coordinate is 2pα(1/u)τ where τ is logarithmic time: τ = ln t.[1] Shrinking along the axes is linear and uniform (no chaoticity).

The Kasner metric (developed by and named for the American mathematician Edward Kasner in 1921)[2] is an exact solution to Albert Einstein's theory of general relativity. It describes an anisotropic universe without matter (i.e., it is a vacuum solution). It can be written in any spacetime dimension and has strong connections with the study of gravitational chaos.

  1. ^ The expression for r is derived by logarithming the power coefficients in the metric: ln [t2pα(1/u)] = 2pα(1/u) ln t.
  2. ^ Kasner, Edward (October 1921). "Geometrical Theorems on Einstein's Cosmological Equations". American Journal of Mathematics. 43 (4): 217. doi:10.2307/2370192.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne