Lattice gas automaton

HPP simulation of gas flow. The shades of grey of the individual pixels are proportional to the gas particle density (between 0 and 4) at that pixel. The gas is surrounded by a shell of yellow cells that act as reflectors to create a closed space.

Lattice gas automata (LGCA), or lattice gas cellular automata, are a type of cellular automaton used to simulate fluid flows, pioneered by Hardy–Pomeau–de Pazzis and FrischHasslacherPomeau. They were the precursor to the lattice Boltzmann methods. From lattice gas automata, it is possible to derive the macroscopic Navier–Stokes equations.[1] Interest in lattice gas automaton methods levelled off in the early 1990s, as the interest in the lattice Boltzmann started to rise.[2] However, an LGCA variant, termed BIO-LGCA, is still widely used[3] to model collective migration in biology.

  1. ^ Succi, section 2.3 describes the process
  2. ^ Succi, section 2.6
  3. ^ Deutsch, Andreas; Nava-Sedeño, Josué Manik; Syga, Simon; Hatzikirou, Haralampos (2021-06-15). "BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration". PLOS Computational Biology. 17 (6): e1009066. Bibcode:2021PLSCB..17E9066D. doi:10.1371/journal.pcbi.1009066. PMC 8232544. PMID 34129639.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne