The nitrogen-vacancy center (N-V center or NV center) is one of numerous photoluminescentpoint defects in diamond. Its most explored and useful properties include its spin-dependent photoluminescence (which enables measurement of the electronic spin state using optically detected magnetic resonance), and its relatively long (millisecond) spin coherence at room temperature, lasting up to milliseconds.[1] The NV center energy levels are modified by magnetic fields,[2]electric fields,[3]temperature,[4] and strain,[5] which allow it to serve as a sensor of a variety of physical phenomena. Its atomic size and spin properties can form the basis for useful quantum sensors.[6]
NV centers enable nanoscale measurements of magnetic and electric fields, temperature, and mechanical strain with improved precision. External perturbation sensitivity makes NV centers ideal for applications in biomedicine—such as single-molecule imaging and cellular process modeling.[7] NV centers can also be initialized as qubits and enable the implementation of quantum algorithms and networks. It has also been explored for applications in quantum computing (e.g. for entanglement generation[8]), quantum simulation,[9] and spintronics.[10]