RFQ beam cooler

A radio-frequency quadrupole (RFQ) beam cooler is a device for particle beam cooling, especially suited for ion beams. It lowers the temperature of a particle beam by reducing its energy dispersion and emittance, effectively increasing its brightness (brilliance). The prevalent mechanism for cooling in this case is buffer-gas cooling, whereby the beam loses energy from collisions with a light, neutral and inert gas (typically helium). The cooling must take place within a confining field in order to counteract the thermal diffusion that results from the ion-atom collisions.[citation needed]

The quadrupole mass analyzer (a radio frequency quadrupole used as a mass filter) was invented by Wolfgang Paul in the late 1950s to early 60s at the University of Bonn, Germany. Paul shared the 1989 Nobel Prize in Physics for his work. Samples for mass analysis are ionized, for example by laser (matrix-assisted laser desorption/ionization) or discharge (electrospray or inductively coupled plasma) and the resulting beam is sent through the RFQ and "filtered" by scanning the operating parameters (chiefly the RF amplitude). This gives a mass spectrum, or fingerprint, of the sample. Residual gas analyzers use this principle as well.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne