The chemical inertness and very high melting point of tantalum make it valuable for laboratory and industrial equipment such as reaction vessels and vacuum furnaces. It is used in tantalum capacitors for electronic equipment such as computers. It is being investigated for use as a material for high-quality superconducting resonators in quantum processors.[12][13] Tantalum is considered a technology-critical element by the European Commission.[14]
^ abcArblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN978-1-62708-155-9.
^Ta(–3) occurs in Ta(CO)53−; see John E. Ellis (2003). "Metal Carbonyl Anions: from [Fe(CO)4]2− to [Hf(CO)6]2− and Beyond†". Organometallics. 22 (17): 3322–3338. doi:10.1021/om030105l.
^Ta(0) is known in Ta(CNDipp)6; see Khetpakorn Chakarawet; Zachary W. Davis-Gilbert; Stephanie R. Harstad; Victor G. Young Jr.; Jeffrey R. Long; John E. Ellis (2017). "Ta(CNDipp)6: An Isocyanide Analogue of Hexacarbonyltantalum(0)". Angewandte Chemie International Edition. 56 (35): 10577–10581. doi:10.1002/anie.201706323. Additionally, Ta(0) has also been previously reported in Ta(bipy)3, but this has been proven to contain Ta(V).
^Ta(I) has been observed in CpTa(CO)4; see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (2008). Lehrbuch der Anorganischen Chemie (in German) (102 ed.). Walter de Gruyter. p. 1554. ISBN9783110206845.