Part of a series of articles about |
Quantum mechanics |
---|
In quantum mechanics, wave function collapse, also called reduction of the state vector,[1] occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.[2]
While standard quantum mechanics postulates wave function collapse to connect quantum to classical models, some extension theories propose physical processes that cause collapse. The in depth study of quantum decoherence has proposed that collapse is related to the interaction of a quantum system with its environment.
Historically, Werner Heisenberg was the first to use the idea of wave function reduction to explain quantum measurement.[3][citation needed]